
44 The Delphi Magazine Issue 64

Under Construction:
Wireless Application Protocol
by Bob Swart

Delphi is great for writing
internet and intranet applica-

tions. In fact, in my view, the
WebBroker and InternetExpress
way of writing web server applica-
tions is second to none. It’s also
easy to extend or enhance them,
for example in order to generate
WML (Wireless Markup Language)
for WAP (Wireless Application Pro-
tocol) applications, as we shall see
in this article.

WAP
WAP is used by WAP-enabled
mobile phones. It allows users of
these mobile phones to access
information from the web, pro-
vided it has been coded using WML
(which is very similar to HTML, as
we’ll discover in a moment). This
means that not everything on the
web is available to WAP phone
users, but only those special parts
that are written in WML. To be
honest, you don’t want to see the
average website on a 200x200 pixel
display capable of a mere four
shades of grey anyway! WAP is an
evolving standard, currently at
version 1.2. The Blueprint proto-
type that we use in this article is
WAP 1.2 compatible, as you’ll find
out in a moment.

Nokia WAP Toolkit
Before we start you need to have
some environment to run your
WAP applications. Nokia has devel-
oped a special WAP Toolkit, cur-
rently at version 2.0, written in
Java. It requires the Java Runtime
Environment 1.2.2 or higher and
can be downloaded from www.
forums.nokia.com after you’ve reg-
istered yourself on this website.
The WAP Toolkit can be used to
load static or dynamic WML files
(generated by Delphi, for example)
and display them in a WAP simula-
tor (see Figures 2 and 3). The WAP
Toolkit is actually a very advanced

environment and supports far
more than we will use in this arti-
cle, so it’s a good way to get started
and get more involved with WAP
applications anyway.

WML
So, what’s this WML all about? Or
rather, what is not in WML that is in
HTML? Well, fancy things like
nested tables, layers and so on are
out, and so are colours (most WAP
phones are capable of showing just
four shades of grey). As we look
closer, we’ll see that WML is actu-

ally based on XML (eXtensible
Markup Language). WML files
aren’t called pages (like HTML
pages), but rather cards, or a deck
(that is, a collection of cards). A
card specifies a single interaction
with the end-user, while a deck
contains an entire session, or mul-
tiple sessions, each made up of
multiple cards.

An example WML file to login to
your bank account with an

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http:///www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="login" title="Account Balance">
<p>
Please Enter Your

Account: <input name="Account" format="*N" maxlength="7"
emptyok="false"/>

PinCode: <input name="PinCode" format="*N" maxlength="4"
emptyok="false"/>

</p>
<do type="prev" label="Balance">
<go method="post" href="http://192.168.92.201/cgi-bin/tdm64.dll/login">
<postfield name="Account" value="$(Account)"/>
<postfield name="PinCode" value="$(PinCode)"/>

</go>
</do>
</card>
</wml>

➤ Listing 1: Account Balance
WML example.

➤ Figure 1: Nokia WAP Toolkit with my sample card.

December 2000 The Delphi Magazine 45

account number and pin code,
in order to obtain a real time
account balance update, is shown
in Listing 1.

Note the similarities and differ-
ences with HTML. Tags must be
lower case (which is a rule from
XML) and everything on the first
page of the screen must be
included within <p>..</p> tags: I
don’t know why, but it seems to be
a rule as well. Note that each WML
document can contain one or more
cards, one after each other in the
same file, which is then also called
a deck.

Note that the input types are
slightly different, and allow us to
specify the format: * means an
unlimited number of characters of
a certain type, where N is numeri-
cal, X is an uppercase letter, x is a
lowercase letter and A is X plus
punctuation. This is useful to
enforce the input of numerals only,
as in the account number and pin
code in this case, especially in
combination with the maxlength
attribute.

By the way, there is a special
input type called password which
replaces every key you input on
your WAP phone with an asterisk.
This might seem helpful, but I’ve
learned that there are ‘slow’ WAP
phones which display the entered
character for a split second before
replacing it with the asterisk.
Besides, it’s hard to type in your
password using the numerical keys
(where pressing the 7 key two
times gives a Q... or was it three
times?), especially if you can’t see
the current character on your
phone’s display, so I would recom-
mend careful consideration before
you start ‘protecting’ your WAP
applications too much. Most
people should be well enough
aware of security to not let the
entire world look over their shoul-
ders when they enter a pin code on
their WAP phone display in the
first place.

More interesting are the <do>
and <go> tags. The <do> tag speci-
fies a certain action and label that
will be associated with one of the
two ‘soft’ buttons on the WAP
phone. We can assign a label and
action to the left button (next) or to

the right button (previous). By
default, when you use input fields
(such as the account and pin code
fields in our example), the left
button (next) gets the caption Edit
and is used to enter or edit the
value of these input fields. So, in
this case, the right button
(previous) is used to assign the
Balance action to, which is what I
have done in the <do> tag.

The <go> tag is used to jump to
an external URL (or WML file) or,
in this case, to a web server appli-
cation: the tdm64.dll ISAPI DLL
which generates dynamic WML.
This is similar to the <FORM> HTML
statement, the difference being
that we need to explicitly list the
fields and values that we want to
send along with the call to this
server application. In WML we do
this using the <postfield> tag. Note
that we can use existing input
fields, in this case the Account and
PinCode fields, using the $(...)
syntax.

WMLScript
Where HTML has JavaScript for
client-side scripting support, WML
is equipped with WMLScript. Both
are, in fact, based on ECMAScript,
so you’ll find them quite similar.
WMLScript can be used for valida-
tion of user input, which can be
quite important in the mobile
world, since you don’t want to do
all your validations on the server
side (think of the bandwidth use
and performance). This time, how-
ever, I won’t be covering any
WMLScript, but focusing on how
we can use Delphi and WebBroker
to generate dynamic WML in
response to a request by a card
such as the one in Figure 1.

Account Balance
Let’s walk through our account
balance example, using the WML

➤ Figures 2 (left) and 3 (above):
The Nokia Blueprint Phone
(WAP 1.2).

46 The Delphi Magazine Issue 64

code from Listing 1. As soon as this
WML card is loaded, the WAP
phone shows the account balance
welcome screen, which allows the
client to login using the account
number and pincode.

Note that the next and previous
buttons have a special meaning
now. Next is now Edit (to insert or
edit the account number or
pincode), while previous is now
Balance, or the button to actually
(attempt to) login and show the
requested balance.

If we load the WML card from
Listing 1 into the Nokia WAP
Toolkit and click on the Show
button, the Blueprint phone will
display the account balance
screen from Figure 2. When you
click on the Edit button, you can
enter the account number (see
Figure 3 for my giro account

number: donations welcome!). As
soon as you click on the Balance
button, the web server application
tdm64.dll is called, which is next on
our schedule to create.

Dynamic WML
Start Delphi 5 and create a new
WebBroker project using the File
| New Web Server Application
wizard. For a WAP application, I
would always use an ISAPI DLL, so
at least mobile phone users don’t
have to wait for a CGI application to

load and unload before they see
the result on their display. As you
can see in the WML listing already,
the name of the WebBroker appli-
cation should be TDM64, so the
ISAPI DLL is named tdm64.dll. We
also need a WebActionItem with
PathInfo /login to obtain the infor-
mation (account and pin code) and
return, obviously, the current
balance information.

Inside the OnAction event for the
WebItemAction, we need to generate
the dynamic WML. But first we
need to specify that it is in fact
WML that we want to return and
not plain HTML. This can be done
by assigning text/vnd.wap.wml to
the Response.ContentType. And we
also want to include the DOCTYPE
line, after which an empty line sep-
arates the header from the real
WML content, which should be
encoded as a card again. The
example WML output that I want to
generate is as follows:

<wml>
<card id="Balance"
title="Account Balance">

<p>
Account: 4068598
Balance: xxxxx
</p>
</card>
</wml>

Apart from the fact that we need to
perform account number and
PinCode validation, the OnAction
item is implemented as shown in
Listing 2.

The dynamically generated
WML produces the expected
result on the WAP display, as can

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.ContentType := 'text/vnd.wap.wml';
Response.Content := '<?xml version="1.0"?>'#13#10 +
'<!DOCTYPE wml PUBLIC ' +
'"-//WAPFORUM//DTD WML 1.1//EN" '+
'"http:///www.wapforum.org/DTD/wml_1.1.xml">'#13#10#13#10 +
'<wml>'#13#10 +
'<card id="Balance" title="Account Balance">'#13#10 +
'<p>'#13#10 +
'Account: ' +
Request.ContentFields.Values['Account'] + '
' +
'Balance: xxxxx'#13#10 +
'</p>'#13#10 +
'</card>'#13#10 +
'</wml>';

end;

➤ Listing 2:
OnAction generating WML.

➤ Figures 4 (below) and 5 (right):
Account Balance dynamic
WML output.

December 2000 The Delphi Magazine 47

be seen from the screenshot in
Figure 4.

WebBroker And WML
So far, we’ve seen what WAP is (a
wireless application protocol),
how we can write WML, and how
we can generate simple WML, but it
would be interesting to see if we
can somehow use the existing
WebBroker components to pro-
duce WML. We’ve already used the
Request object (remember the
ContentFields that were posted
with the postfield tag) and the
Responseobject as if we didn’t know
any better. In fact, these objects
will work the same whether we’re
producing HTML, WML or what-
ever format we like, and whether
we’re connecting to a WAP phone
or using HTTP. Next time, we’ll go
deeper into that last topic and
cover WAP Gateways, which are
needed to run WAP applications in
the outside world (rather than the
Nokia WAP Toolkit simulator).

Another topic I want to leave for
next time is the question about
images (who wants to use a WAP
phone to display an image
anyway?). While a WAP phone is no
browser, and has no internal sup-
port for GIF or JPEG files, for exam-
ple, it is still perfectly possible to
show bitmaps on the display, using
a format called WBMP.

WebBroker Components
For PageProducers and (hence) the
DataSetPageProducer this is no
problem. The MidasPageProducer
will not work, for several reasons,
like the fact that the current WAP
phones can probably hold up to
10Kb (or perhaps a little bit more)
in their memory, and the fact that
the generated HTML/XML is
dependent on JavaScript files, etc.
These are enough reasons not to
try to connect a MidasPageProducer
to a WAP phone, but other Page-
Producers work just fine.

When it comes to the Data-
SetTableProducer, the big question
is if the HTML <TABLE> tag is com-
patible with WML. The answer is
yes, but with some limits. Obvi-
ously, WAP phones have much
smaller screens. Also, a number of
table attributes have no meaning

anymore, and some must be used,
like the columns attribute (so it’s
easier for the WAP phone to start
rendering the table).

By the way, when the output is
too wide or long to fit on the dis-
play, you can always use the scroll
buttons (the four arrows on the
Blueprint phone) to navigate.
Figure 5 illustrates the display of
the Blueprint phone when showing
the account and balance informa-
tion in a simple HTML/ WML table.
The syntax used to produce the
display of Figure 5 is shown in
Listing 3.

Note the <big> tag used here for
the first time, which results in a
much larger font (and generally
takes up too much space to allow
its use for more than about a dozen
letters).

Unfortunately, all this means
that the HTML code that the
DataSetTableProducer and Query-
TableProducer are producing is not
likely to be WML-compatible for
use with WAP phones. So, apart
from the simple PageProducers,
there’s a whole area of new
WAP/WML-enabled components
that can help us to produce
dynamic output, however small in
amount, much more easily. Espe-
cially since the use of tables and
queries is not something we must
underestimate for WAP-enabled
WML-producing applications.

Next Time
Last time we saw that producing
XML is in fact quite similar to pro-
ducing HTML. And this time we’ve
seen that producing WML is just as
easy. Next time we’ll continue our
coverage of WML by showing more
ways of producing WML with
Delphi (for example, from an ASP
application), and by writing some
WML producing components to
help develop WML applications
the Delphi way. Finally, I’ll tell you
all about WAP gateways, and hope
to be able to tell you how to con-
nect to a real WAP application (for
those lucky few that already own a
WAP phone, that is). All this and
more next month, so stay tuned...

Acknowledgements
I want to thank my TAS-AT DOC
colleague Arnim Mulder for his
welcome assistance and sugges-
tions while playing with WAP and
WML.

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-consultant
for TAS Advanced Technologies
and co-founder of the Delphi
OplossingsCentrum (www.tas-at.
com/doc), as well as a freelance
technical author and speaker at
Delphi events all over the world.

<wml>
<card id="Balance" title="Account Balance">
<p>
<table columns="2"><tr>
<td>Account:
Balance:</td>
<td>4068598
xxxxx</td>
</tr></table>
<big>TDM #64</big>
</p>
</card>
</wml>

➤ Listing 3

	WAP
	Nokia WAP Toolkit
	WML
	WMLScript
	Account Balance
	Dynamic WML
	WebBroker And WML
	WebBroker Components
	Next Time
	Acknowledgements

